ar X iv : m at h / 05 11 06 8 v 1 [ m at h . C T ] 3 N ov 2 00 5 Bounded and unitary elements in pro - C ∗ - algebras ∗

نویسنده

  • Rachid El Harti
چکیده

A pro-C∗-algebra is a (projective) limit of C∗-algebras in the category of topological ∗algebras. From the perspective of non-commutative geometry, pro-C∗-algebras can be seen as non-commutative k-spaces. An element of a pro-C∗-algebra is bounded if there is a uniform bound for the norm of its images under any continuous ∗-homomorphism into a C∗-algebra. The ∗-subalgebra consisting of the bounded elements turns out to be a C∗-algebra. In this paper, we investigate pro-C∗-algebras from a categorical point of view. We study the functor (−)b that assigns to a pro-C∗-algebra the C∗-algebra of its bounded elements, which is the dual of the Stone-Čech-compactification. We show that (−)b is a coreflector, and it preserves exact sequences. A generalization of the Gelfand-duality for commutative unital pro-C∗-algebras is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 11 05 9 v 1 [ m at h . O A ] 5 N ov 2 00 3 ON THE ASYMPTOTIC TENSOR NORM

We introduce a new asymptotic one-sided and symmetric tensor norm, the latter of which can be considered as the minimal tensor norm on the category of separable C *-algebras with homotopy classes of asymptotic homomorphisms as morphisms. We show that the one-sided asymptotic tensor norm differs in general from both the minimal and the maximal tensor norms and discuss its relation to semi-invert...

متن کامل

ar X iv : m at h / 06 11 38 6 v 1 [ m at h . R A ] 1 3 N ov 2 00 6 Quasi Q n - filiform Lie algebras ∗

In this paper we explicitly determine the derivation algebra, automorphism group of quasi Qn-filiform Lie algebras, and applying some properties of root vector decomposition we obtain their isomorphism theorem. AMS Classification: 17B05; 17B30

متن کامل

ar X iv : m at h / 06 11 64 6 v 1 [ m at h . R A ] 2 1 N ov 2 00 6 NATURALLY GRADED 2 - FILIFORM LEIBNIZ ALGEBRAS

The Leibniz algebras appear as a generalization of the Lie algebras [8]. The classification of naturally graded p-filiform Lie algebras is known [3], [4], [5], [9]. In this work we deal with the classification of 2-filiform Leibniz algebras. The study of p-filiform Leibniz non Lie algebras is solved for p = 0 (trivial) and p = 1 [1]. In this work we get the classification of naturally graded no...

متن کامل

ar X iv : m at h / 06 11 77 4 v 1 [ m at h . FA ] 2 5 N ov 2 00 6 MODULE EXTENSIONS OF DUAL BANACH ALGEBRAS

In this paper we define the module extension dual Banach algebras and we use this Banach algebras to finding the relationship between weak−continuous homomorphisms of dual Banach algebras and Connes-amenability. So we study the weak∗−continuous derivations on module extension dual Banach algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005